INFRARED SPECTRA AND SUBSTITUENT EFFECTS IN 2-(3-, **AND 4-SUBSTITUTED PHENYLMETHYLENE)- -1,3-CYCLOHEPTANEDIONES**

Alexander PERJÉSSY, Pavol HRNČIAR and Ján ŠRAGA

Department of Organic Chemistry, COlllenills University, 842 *15 Bratislava*

Received November 11th, 1981

The wave numbers of the fundamental $C=O$ and $C=C$ stretching vibrations, as well as that of the first overtone of C=O stretching vibration of 2-(3-, and 4-substituted phenylmethylene)--1,3-cycIoheptanediones and 1,3-cycIoheptanedione were measured in tetrachloromethane and chloroform. The spectral data were correlated with σ^+ constants of substituents attached to phenyl group and with wave number shifts of the $C=O$ stretching vibration of substituted acetophenones. The slope of the linear dependence $\nu \nu s \sigma^+$ of the C=C stretching vibration of the ethylenic group was found to be more than two times higher than that of the analogous correlation of the $C=0$ stretching vibration. Positive values of anharmonicity for asymmetric $C=0$ stretching vibration can be considered as an evidence of the vibrational coupling in a cyclic 1,3-dicarbonyl system similarly, as with derivatives of 1,3-indanedione. The relationship between the wave numbers of the symmetric and asymmetric $C=O$ stretching vibrations indicates that the effect of structure upon both vibrations is symmetric. The vibrational coupling in 1,3-cycIoheptanediones and the application of Seth-Paul-Van Duyse equation is discussed in relation to analogous results obtained for other cyclic 1,3-dicarbonyl compounds.

Our preceding papers¹⁻⁸ dealt with the C=O stretching vibrations of some cyclic 1,3-diketones and showed the electronic effects of substituents upon these vibrations. The linear relations between the wave numbers of symmetric and asymmetric $C=O$ stretching vibrations were employed by investigating the vibrational coupling and geometry in a cyclic 1,3-dicarbonyl system^{1,5-7}. The most recent results showed^{9,10} that investigation of the first overtones and the mechanical anharmonicity might be of use when clearing and proving the vibrational coupling causing a splitting of the

la, $X = 4-N(CH_3)_2$ Id , $X = 4$ -CH₃ Ig , $X = 4$ -Cl I_j $X = C-NO_2$

 Ib , $X = 4$ -OH Ie , $X = 4-F$ $Ih, X = 4-Hr$ *Ik*, $X = 4 \cdot NO_2$

 Ic , $X = 4$ -OCH₃ $If, X = H$ *Ii,* X = 4-CN

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

absorption band of the $C=O$ stretching vibration in cyclic 1.3-dicarbonyl compounds.

This paper is aimed to study the relationships between the spectral data and structure of 1,3-cycloheptanediones in relation to other cyclic l,3-dicarbonyl systems. Therefore, wave numbers of fundamental $C=O$ and $C=C$ stretching vibrations and those of the first overtone of the $C=O$ stretching vibrations of 2-(3-, and 4-X--phenylmethylene)-1,3-cycloheptanediones I and 1,3-cycloheptanedione were measured and compared with spectral data of dibenzo analogues of $2-(3-$, and $4-X$ -phenylmethylene)-1,3-cycloheptanediones⁷ II .

EXPERIMENTAL

Compounds of general formula *I* were synthesized according to¹¹. The synthesis of cycloheptanedione, the properties and detailed preparation of I are being reported elsewhere¹²

The infrared spectra of CCI_4 and CHCl_3 solutions of compounds were taken on a Zeiss, model 75 IR Specord, and Perkin-Elmer, model 567 grating spectrophotometers using cells of 0 I, I, 5 and 60 mm thickness. Concentration of the measurcd solutions met requirement for a $70-75\%$ maximum of the bands examined. The absorption band peaks were read with a \pm 0.5 cm⁻¹ accuracy. The wave numer scale was calibrated against reference spectra of both indene and atmospheric water vapour.

Data for σ^+ constants of substituents, reported in¹³ and well-characterized σ values collected in¹⁴ were employed for linear correlations of wave numbers. The wave number shifts of the C=O stretching vibration Δv_{AF} of substituted acetophenones were calculated according to equation

$$
\Delta v_{\rm AF} = v(C=0)_{\rm XC6H_4COCH_3} - v(C=0)_{\rm C_6H_5COCH_3}
$$

using values in CCl₄ as reported by Laurence and Berthelot¹⁵.

RESULTS AND DISCUSSION

Wave numbers of the fundamental $C=O$ and $C=C$ stretching vibrations and those of the first overtone of the C=O stretching vibrations of 2-(3-, and 4-X-phenvlmethylene)-1,3-cycloheptanediones I measured in dilute CCl_4 or CHCl_3 solutions are listed in Tables I and II. Following values of wave numbers of $C=O$ stretching vibration (in cm⁻¹) were measured for 1,3-cycloheptanedione: $v_{01(s)} = 1730.5$, $v_{01(a s)} = 1706$, $v_{02(s)} = 3443$, $v_{02(a s)} = 3412$ in CCI₄; $v_{01(s)} = 1723.5$, $v_{01(a s)} =$ $= 1700.5$ in CHCl₃.

TABLE I

Wave numbers (cm⁻¹) both of the fundamental C=0 stretching vibration and the first overtone Vave numbers cm^{-1}) both of the fundamental C==O stretching vibration and the 1 CCl₄ for the series of 2-(3-, and 4-X-phenylmethylene)-1,3-cycloheptanediones *I*

^{*a*} Low solubility; ^{*h*} low solubility and overlapping with $v(OH)$.

TABLE JI

Wave numbers (cm⁻¹) of the C=0 and C=C stretching vibrations in CHCl, for the series of 2-(3-, and 4-X-phenylmethylene)-1,3-cyc!oheptanediones I

i essonial

Similarly as other cyclic 1,3-dicarbonyl compounds existing in a diketo form, compounds I also reveal two absorption bands in the wave number region of fundamental $C=O$ stretching vibrations; the lower wave number, more intese band belongs to the asymmetric $(v_{0.1(m)})$ vibration, and the weaker one at the higher wave number to the symmetric $(v_{0,1(s)})$ vibration of the coupled 1,3-dicarbonyl system. The absorption bands v_s and v_{as} of the 1,3-cycloheptanedione and its derivatives I appeared at higher wave numbers when compared with dibenzo derivatives II , this being caused by an isolation of carbonyl group in a saturated seven-membered ring.

As known, the difference between the wave number of the symmetric and asymmetric stretching C=O vibration $\Delta v = v_s - v_{as}$ can be considered a measure of the vibrational coupling in a 1,3-dicarbonyl system. As observed by Fayat and Foucaud¹⁷, the Δv values depend in the first approach on the magnitude of the angle α , formed by two vibrating $C=O$ bands in a cyclic system. The magnitude of this angle is a function of both the structure and geometry of the ring on one hand, and the electronic structure of $C_{(2)}$ and its close exocyclic environment on the other.

The Δv values for compounds I appear within 20-30 cm¹ and are, on average by 10 cm⁻¹ lower than those for dibenzo derivatives II (ref.⁷), and by $15-20$ cm⁻¹ lower than for five-membered cyclic 1,3-diketones^{1,6,16}. A successive lowering of the vibrational coupling degree from a five-membered system through dibenzo derivatives II to compounds I can be interpreted in the first approach as an enlargement of the ring and extension of the $C=C$ bond length in the ring resulting in diminution of the angle α .

SCHEME 1

Derivatives of 1,3-cycloheptadione *II* revealed in the $3450-3370$ cm⁻¹ region couple of absorption bands ascribable to the first overtone of the symmetric $v_{0.2}$ _(s) and asymmetric $v_{02(s)}$ C=O stretching vibration. The mechanical anharmonicities of vibration $\omega_e x_e$ can be calculated from the equation

$$
\omega_{\rm e} x_{\rm e} = (v_{02} - 2v_{01})/2
$$

employing the wave numbers of the first overtones and the double of wave numbers of the corresponding fundamental vibrations.

The symmetric $C=O$ stretching vibration for 1,3-cycloheptanediones gives nega-

tive values of $\omega_e x_e = -2$ to -19 cm⁻¹, this being analogous to vibrations of many common carbonyl compounds having a weak, or none vibrational interaction¹⁸⁻²⁰. On the other hand, the mechanical anharmonicity values for the asymmetric $C=$ O stretching vibration are either positive or close to zero $\omega_{\alpha}x_{\alpha} = 0$ to $+4$ cm⁻¹. This phenomenon has been found with derivatives of 1,3-indanedione and other cyclic 1,3-dicarbonyl compounds, having not only the rigid *W,* but also *U* conformation^{9,10} as well. The anharmonicities for v_{as} are even more pronounced towards positive values in more coupled systems¹⁶. As follows, the anharmonicity of the asymmetric stretching vibration can serve for evidencing, or alternatively for a quantitative evaluation of the vibrational coupling in a cyclic 1,3-dicarbonyl system.

Absorption bands of C=C stretching vibration of the $C=CH$ group of I appear at 1 612 – 1 570 cm⁻¹ in CHCl₃, they can be distinguished from those of the benzene ring by a higher absorption intensity, and, by comparison with spectra of compounds without aromatic systems²¹⁻²⁴. Differences between the arithmetic means of $v_s(C=0)$ and $v_{ss}(C=0)$ values and the wave numbers of C=C stretching vibration are in accordance with analogous values of compounds^{23,24}, having the $C=O$ bond in an *s-cis* conformation with respect to the $C=C$ bond.

Correlation Analysis

The arithmetic means of wave numbers of the fundamental symmetric and asymmetric C=O stretching vibration (\bar{v}_{01}) of compounds I in CCl₄ and CHCl₃ correlate with the Brown-Okamoto σ^+ constants of substituents X. The employment of the Hammett values afforded statistically less significant results. The suitability of the

Linear correlations $y = \rho x + q$ for spectral data of 2-(3-, and 4-X-phenylmethylene)-1,3-cycloheptanediones I

^a Number of experimental points employed for correlation; ^b correlation coefficient; ^c standard deviation; ^d values $v_{01(s)}$ and $v_{01(as)}$ in CCl₄ and CHCl₃ for 1,3-cycloheptanedione were taken into correlation.

arithmetic means of wave numbers of symmetric and asymmetric vibrations, as well as the σ^+ constants for cyclic 1,3-diketones have already been discussed^{2-5,7}. The statistical results of linear dependences for the spectral data of 1,3-cycloheptanediones are listed in Table III. The \bar{v}_{0} (C=O) values for compounds *I* have a satisfying linear correlation also wih wave number shifts of the $C=O$ stretching vibrations of acetophenones (Δv_{AF}). Similar correlations were recently¹⁵ used to evaluate the transmission of electronic effects in various series of carbonyl compounds. Relaionships of the $v(C=O)$ *vs* Δv_{AF} , (or v_{AF}) type were recently reported^{9.10} also for some 1,3-dicarbonyl systems.

The slopes of linear correlation $\bar{v}_{01}(C=0)$ *vs* σ^+ for a series of compounds *I* in CCl_4 and in CHCl₃ are by approximately 13% lower than those of dibenzo derivatives II. The higher sensitivity of carbonyl groups towards electronic effects in compounds II is due to the enhancement of their electron-accepting effect resulting from the conjugation with π -electrons of two benzene rings. A similar sensitivity increase of carbonyl compounds towards substituent effects was encountered with five-membered rings transition from 2-(arylmethylene)-1,3-indanediones² to 2-(arylmethylene)- $-1,3$ -benz $[f]$ indanediones⁵; this behaviour can be explained analogously as with the preceding case.

The arithmetic means of the first overtone wave numbers of the symmetric and asymmetric C=O stretching vibration (\bar{v}_{02}) of cycloheptanedione derivatives I, which are very close to the twice of arithmetic means of the corresponding fundamental vibrations, also afford a statistically significant correlation with σ^+ constants of substituents. This fact is in line with a theoretical presumption²⁵ that the characteristics of vibration can be transferred also in the anharmonic approximation . More-

Relationship between the arithmetic means of wave numbers of symmetric and asymmetric fundamental C=O and wave numbers C=C stretching vibrations and σ^+ constants of substituents for 2-(3-, and 4-X-phenylmethylene)-1,3-cycloheptanediones $I. 1 \tilde{v}_{01}$. .(C=O) vs σ^+ , 2 v_{01} (C=C) vs σ^+

over, the slope of $\bar{v}_{02}(C=O)$ *vs* σ^+ corresponds approximately to the double of the slope of correlation \bar{v}_{0} ₁(C=O) *vs o*⁺ associated with the fact that transitions expressed by $\bar{v}_{02}(C=O)$ are *quasi* harmonic.

The wave number of the C=C stretching vibration of the exocyclic $\text{C} = \text{CH}$ grouping of compounds of series I affords a good linear relationship on σ^+ constants of substituents. Table **III** documents the value of the slope of relationship to be by more than two times higher than that of an analogous relationship for wave numbers of C=O stretching vibration (cf. Fig. 1). This effect can be also observed with other systems²⁶, having the $C=$ \overline{O} group in an *s-cis* conformation in respect to the C=C bond. Thus, *e.g.* for α , β -unsaturated aromatic ketones²³ and substituted 3-(phenylmethylene)-2,4-pentanediones¹⁰ the slope ratio $\varrho(C=O)/\varrho(C=C)$ of the linear relationship $v(C=O)$ vs σ^+ for *s-cis* conformation makes about 0.5.

SCHEME 2

Like in the series of other cyclic 1,3-diketones^{1,5-7}, 1,3-cycloheptanedione reveals a linear correlation between the wave number of symmetric and asymmetric $C=O$ stretching vibration; data obtained in CCl_4 and in CHCl_3 lie on the same line (Fig. 2). The slope of this dependence is close to one, and consequently, the v_s is approximately equally sensitive towards electronic effects as v_{as} . A similar slope of correlations v_{s} *vs* v_{as} was reported¹⁷ for wave number of the C=O stretching vibration of 1,3-cyclohexanediones and 1,3-cyclopentanediones. On the other hand, other cyclic 1,3-diketones s 1,3-indanediones¹ 1,3-benz $[f]$ indanediones⁵, 5,6-dihydro-4,7-dithia-1,3-indanediones⁶ and dibenzo analogues of 1,3-cycloheptanediones exhibit the slope of v_s vs v_{as} correlation always lower than 1. This nonsymmetrical effect of structure upon v_s and v_{as} of the afore-mentioned examples is due a direct conjugation between two C=O groups having the vibrations mechanically coupled. Compound I , similarly as other

saturated cyclic 1,3-diketones¹⁷ are lacking this conjugation and therefore, the electronic effects of the close environment of $C=O$ groups shall affect symmetrically both types of vibrations v_s and v_{ss} . In systems containing conjugated multiple bonds in the ring, the asymmetry of the electronic effects upon ν and ν shall depend on the degree of mesomeric interaction between thc two carbonyl groups. According to this concept, the decreasing slopes of dependences $v_s v_s v_{as}$ for hitherto investigated systems can be arranged in a series of increasing mesomeric interaction between \overline{C} = O groups.

Arithmetic means of wave numbers of the symmetric and asymmetric fundamental $C=O$ stretching vibrations in $CCl₄$ for 42 derivatives of 1,3-cycloheptanedione I and dibenzo analogues II (ref.⁷) can be correlated with $X^+(R)$ constants of structural fragments in the sense of improved and extended Seth-Paul-Van Duyse equation²⁷

$$
\bar{v}_{01}(C=O) = 33.45 \left(\pm 0.84 \right) \sum X^{+}(R) + 1.565.2
$$
\n
$$
r = 0.988, \quad s = 2.2
$$
\n(1)

Dismembering the 1,3-cycloheptanedione structure into structural fragments, as well as the method of calculation of the additive $X^+(R)$ constants of the structural fragments is described²⁸ in more detail.

The equation (1) upon comparison with an analogous relationship for 1,3-indanediones ⁸

$$
\bar{v}_{01}(C=O) = 33.09 \left(\pm 0.70\right) \sum X^+(R) + 1610.6
$$
\n
$$
r = 0.991, \quad s = 2.0
$$
\n(2)

FIG. 2

Relationship between the wave number of symmetric and asymmetric C=O stretching vibration for 1,3-cycloheptanedione derivatives. \bullet in CCI₄, \circ in CHCI₃

shows that the slopes of both correlations are virtually identical, and the lines are shifted parallel along the wave number axis by approximately 46 cm^{-1}. As it follows, introduction of $X^+(R)$ constants in the sense of Seth-Paul-Van Duyse equation makes the sensitivity of two various cyclic 1,3-dicarbonyl systems unified towards effects of the structural environment, notwithstanding whether the $C=O$ groups are in a five- or a seven-membered ring. Difference between the intercepts on the wave number axis for linea (1) and (2) is associated with the enhancement of wave numbers of vibrations of the $C=O$ group when contracting the ring size from sevento a five-membered ring. As already reported²⁹ a similar phenomenon was encountered also with cyclic monocarbonyl compounds; this was rationalized by the change of an *Sp2* hybridization of the C atom of the carbonyl group due to diminuation of valence angles in the ring. This effect is not, however, included in the calculation of $X^+(R)$ constants of 1,3-dicarbonyl structural fragments. Even though the application of Seth-Paul-Van Duyse equation on specific structure of cyclic 1,3-diketones has some restrictions, the general trend of results is as follows: the arithmetic means of wave number $v_{(s)}$ and $v_{(as)}$ of five- and seven-membered cyclic 2,3-diketones correlate with $X^+(R)$ constants of structural fragments according to equation

$$
\bar{v}_{01}C = O = 33 \sum X^+(R) + B \t{,} \t(3)
$$

where *B* is the constant for the proper ring partly dependent on the ring size.

It could be, therefore, concluded that the Seth-Paul~Van Duyse equation is satisfactorily applicable even for wave numbers of the $C=O$ stretching vibration of 1,3--cycloheptanediones. Results of our preceding papers^{8,27,28,30,31}, those of the presented paper and also those of other authors³² provided evidence that the improved Seth-Paul-Van Duyse equation can be applied for about 1000 carbonyl and dicarbonyl compounds.

Our thanks are due to Mrs Z. Šusteková, Institute of Chemistry, Comenius University, Bratislava *for recording the spectra and for a valuable technical assistance.*

REFERENCES

- 1. Perjessy A., Hrnciar P.: Tetrahedron 27,6159 (1971).
- 2. Perjéssy A., Hrnčiar P., Krutošíková A.: Tetrahedron 28, 1025 (1972).
- 3. Perjéssy A., Hrnčiar P., Fišera L.: Tetrahedron 28, 3781 (1972).
- 4. Perjéssy A., Hrnčiar P., Sokolová R.: This Journal 38, 559 (1973).
- 5. Perjéssy A., Rotbergs J., Oškāja V. P.: This Journal 41, 2209 (1976).
- 6. Perjessy A., Temkovitz P., Hrnciar P.: This Journal 41, 2904 (1976).
- 7. Perjéssy A., Szemes F., Hrnčiar P.: Acta Fac. Rerum Natur. Univ. Comenianae, Chimia 26, 73 (1978).
- 8. Perjessy A.: This Journal 47, 1486 (1982).
- 9. Perjéssy A., Toma Š.: Acta Fac. Rerum Natur. Univ. Comenianae, Chimia, in press.
- 10. Perjéssy A., Hrnčiar P.: Spectrochim. Acta A 38, 499 (1982).
- 11. Lehnert W.: Synthesis 1974, 667.
- 12. Hrnčiar P., Šraga J., Acta Fac. Rerum Natur. Univ. Comenianae, Chimia 29, 105 (1981).
- 13. Perjéssy A.: Tetrahedron 29, 3189 (1973).
- 14. Hansch C., Leo A.: *Substituent Constants for Correlation Analysis in Chemistry and Biology.* Wiley, New York 1979.
- 15. Laurence Ch., Berthelot M.: J. Chem. Soc., Perkin Trans. 2, 1979, 98.
- 16. Perjessy A., Sraga J., Hrnciar P.: Unpublished results.
- 17. Fayat C., Foucaud A.: Bull. Soc. Chim. Fr. 1970, 4491.
- 18. Sahini V. E., Olteneanu M.: Rev. Roumaine Chim. 18, 361 (1973).
- 19. Perjessy A.: Chem. Zvesti 23, 905 (1969).
- 20. Hayes W. P., Timmons C. J.: Spectrochim. Acta A 24,323 (1968).
- 21. Barlet R., Montagne M., Arnaud P.: Spectrochim. Acta A 25,1081 (1969).
- 22. Martens H., Hoornaert G., Toppet S.: Tetrahedron 29, 4241 (1973).
- 23. Savin V. I., Kitajev J. P.: Zh. Org. Khim. 9, 1101 (1973).
- 24. Savin V. I., Kitaiev J. P., Saidashev I. 1.: Izvest. Akad. Nauk SSSR, Ser Khim. 85 1.
- 25. Papousek D.: This Journal 29, 2277 (1964).
- 26. Perjéssy A.: Unpublished results.
- 27. Perjéssy A.: Tetrahedron 29, 3189 (1973).
- 28. Perjéssy A.: Acta Fac. Rerum Natur. Univ. Comenianae, Chimia, in press.
- 29. Bellamy L. J.: *Infrared Spectra of Complex Molecules,* p. 300. Methuen, London 1959.
- 30. Perjéssy A.: Tetrahedron 29, 3207 (1973).
- 31. Perjéssy A., Krutošíková A., Olejnik A. F.: Tetrahedron 31, 2936 (1975).
- 32. Dinya Z., Schág J. B., Lévai A.: Acta Chim. (Budapest) 99, 453 (1979).

Translated by Z. Votický.